
ECE 604, Lecture 11

October 2, 2018

1 Introduction

In this lecture, we will cover the following topics:

• More on Complex Power

• Wave Phenomenon in the Frequency Domain

• When is Cicuit Theory Valid?

Additional Reading:

• Sections 3.12, 3.13, 3.9, 3.10, 3.11, 4.1, 4.2 Ramo, Whinnery, and Van
Duzer.
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2 More on Complex Power

Now that we realize that complex power is quite different from instantaneous
power: The real part of complex power is proportional to the time average
of the instantaneous power while the imaginary part is proportional to a time
varying power that averages to zero. This imaginary part is termed the reactive
power which is proportional to stored energy in the system. Reactive power
corresponds to time varying part of the instantaneous power that can be both
positive or negative. Hence, when it is positive, it corresponds to power flowing
from the source to the load, but when it is negative, it corresponds to power
returning to the source from the load.

Because of the above observation, it is prudent to look at the conservative
property of complex power for a Maxwellian system. We shall consider a system
where conductive loss as well as impressed sources are present. Using phasor
technique for time-harmonic fields, Maxwell’s equations can be written in the
frequency domain as

∇×E = −jωµH−Mi (2.1)

∇×H = jωεE + σE + Ji (2.2)

where Mi and Ji are impressed magnetic current and electric current sources,
respectively. From now on, we will neglect to use under tilde whenever conve-
nient and assume that these complex vectors or phasors are understood from
the context.

To this end, we use the vector identity that

∇ · (E×H∗) = H∗ · ∇ ×E−E · ∇ ×H∗ (2.3)

The above is like the product rule for derivatives. Then using (2.1) and (2.2) in
(2.3), we have

∇ · (E×H∗) = −H∗ · (jωµH)−H∗ ·Mi −E · (−jωεE∗)− σE ·E∗ −E · J∗i
(2.4)

The above can be further rearranged as

∇ · (E×H∗) = −jωµH ·H∗ + jωεE ·E∗ − σE ·E∗ −H∗ ·Mi −E · J∗i (2.5)

Noticing that for time-harmonic signals, the following identity holds, namely,

〈V (t)I(t)〉 =
1

2
<e[V˜ (ω)I˜∗(ω)] (2.6)

Thus, using this, we can show that

〈WH〉 =
1

2
µ〈H(r, t) ·H(r, t)〉 =

1

2
µ〈|H(r, t)|2〉 =

1

4
µ|H(r, ω)|2 (2.7)

Similarly, we can show that

〈WE〉 =
1

2
ε〈|E(r, t)|2〉 =

1

4
ε|E(r, ω)|2 (2.8)
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In the above, 〈WH〉 and 〈WE〉 are time-average magnetic and electric field stored
energy densities, respectively.

First, we take care to rewrite (2.5) as

∇ · (E×H∗) = −jωµ|H|2 + jωε|E|2 − σ|E|2 −H∗ ·Mi −E · J∗i (2.9)

Since we are dealing with time-harmonic fields, (2.7) and (2.8) imply that

∇ · (E×H∗) = −j4ω[〈WH〉 − 〈WE〉]− σ|E|2 −H∗ ·Mi −E · J∗i (2.10)

If we assume that Mi = Ji = 0 to begin with, taking half the real part of
(2.9) gives

∇ · 1

2
<e(E×H∗) = −1

2
σ|E|2 (2.11)

a statement of energy conservation. Taking half the imaginary part of (2.10)
gives

∇ · 1

2
=m(E×H∗) = −2ω[〈WH〉 − 〈WE〉] (2.12)

Eq. (2.11) implies that ∇· 12<e(E×H∗) is the time-average power exuding from
a point in space while 1

2σ|E|
2 is the time-average power dissipating in the lossy

conductor at that point in space. Meanwhile, −2ω[〈WH〉−〈WE〉] is the reactive
power leaving the point in space. Notice the curious point that the reactive
power is proportional to the difference of the stored magnetic field and electric
field energies. This can be understood from one of the homework problems.

When we turn the impressed sources Mi and Ji back on to be nonzero, then
we can think of −H∗ ·Mi and −E · J∗i as complex powers in (2.9) supplied to
the system by the impressed sources.

3 Wave Phenomenon in the Frequency Domain

Given that we have seen the emergence of wave phenomenon in the time do-
main, it will be interesting to ask how this phenomenon presents itself for time-
harmonic field or in the frequency domain. In the frequency domain, the source-
free Maxwell’s equations are

∇×E(r) = −jωµ0H(r) (3.1)

∇×H(r) = jωε0E(r) (3.2)

Taking the curl of (3.1) and then substituting (3.2) into its right-hand side, one
obtains

∇×∇×E(r) = −jωµ0∇×H(r) = ω2µ0ε0E(r) (3.3)

Again, using the identity that

∇×∇×E = ∇(∇ ·E)−∇ · ∇E = ∇(∇ ·E)−∇2E (3.4)
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and that ∇ ·E = 0 in a source-free medium, (3.3) becomes

(∇2 + ω2µ0ε0)E(r) = 0 (3.5)

This is known as the Helmholtz wave equation or just the Helmholtz equation.
For simplicity of seeing the wave phenomenon, we let E = x̂Ex(z), a field

pointing in the x direction, but varies only in the z direction. Evidently, ∇ ·
E(r) = ∂Ex(z)/∂x = 0. Then (3.5) becomes(

d2

dz2
+ k2

0

)
Ex(z) = 0 (3.6)

where k2
0 = ω2µ0ε0 = ω2/c20. The general solution to (3.6) is of the form

Ex(z) = E0+e
−jk0z + E0−e

jk0z (3.7)

One can convert the above back to the time domain using phasor technique, or
by using that Ex(z, t) = <e[Ex(z, ω)ejωt], yielding

Ex(z, t) = |E0+| cos(ωt− k0z + α+) + |E0−| cos(ωt+ k0z + α−) (3.8)

where we have assumed that

E0± = |E0±|ejα± (3.9)

The physical picture of the above expressions can be appreciated by rewriting

cos(ωt∓ k0z + α±) = cos

[
ω

c0
(c0t∓ z) + α±

]
(3.10)

where we have used the fact that k0 = ω
c0

. One can see that the first term on the
right-hand side of (3.8) is a sinusoidal plane wave traveling to the right, while
the second term is a sinusoidal plane wave traveling to the left, with velocity c0.

Moreover, for a fixed t or t = 0, the sinusoidal functions are proportional to
cos(∓k0z + α±). From this, we can see that whenever k0z = 2nπ, n ∈ Q where
Q is the set of integers, the functions repeat themselves. Calling this repetition
length the wavelength λ0, we deduce that λ0 = 2π

k0
, or that

k0 =
2π

λ0
=
ω

c0
=

2πf

c0
(3.11)

One can see that because c0 is a humongous number, λ0 can be very large. You
can plug in the frequency of your local AM station to see how big λ0 is.

4 When is Static Theory Valid?

Historically, static electromagnetic theory, like Ampere’s law, Faraday’s law,
Coulomb’s law, and Gauss law, were discovered first. From them came circuit
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theory. Circuit theory consists of elements like resistors, capacitors, and induc-
tors. Static electromagnetic theory, or quasi-static electromagnetic theory was
used to derive the formulas for these elements. Given that we have now seen
electromagnetic theory in its full form, we like to ponder when we can use static
or quasi-static theory to describe electromagnetic phenomena.

Figure 1:

To see this lucidly, it is best to write Maxwell’s equations in dimensionless
units or the same units. Say if we want to solve Maxwell’s equations for the
fields close to an object of size L. This object can be a small particle like the
sphere in your take home exam, or it could be a capacitor, or an inductor. It is
clear that these E and H fields will have to satisfy boundary conditions in the
vicinity of the object as shown in Figure 1. They become great contortionist in
order to do so. Hence, we do not expect a constant field around the object but
that the field will vary on the length scale of L. So we renormalize our length
scale by this length L by defining a new dimensionless coordinate system such
that.

x′ =
x

L
, y′ =

y

L
, z′ =

z

L
(4.1)

By so doing, then Ldx′ = dx, Ldy′ = dy, and Ldz′ = dz, and

∂

∂x
=

1

L

∂

∂x′
,

∂

∂y
=

1

L

∂

∂y′
,

∂

∂z
=

1

L

∂

∂z′
(4.2)

Then, the first two of Maxwell’s equations become

1

L
∇′ ×E = −jωµ0H (4.3)

1

L
∇′ ×H = jωε0E + J (4.4)
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Here, we still have apples and oranges to compare to since E and H have different
units. For instance, the ratio of E to the H field has a dimension of impedance.
To bring them to the same unit, we define a new E′ such that

η0E
′ = E (4.5)

where η0 =
√
µ0/ε0

∼= 377 ohms in vacuum. In this manner, the new E′ has
the same unit as the H field. Then, (4.3) and (4.4) become

η0

L
∇′ ×E′ = −jωµ0H (4.6)

1

L
∇′ ×H = jωε0η0E

′ + J (4.7)

With this change, the above can be rearranged to become

∇′ ×E′ = −jωµ0
L

η0
H (4.8)

∇′ ×H = jωε0η0LE
′ + LJ (4.9)

The above can be further simplified to become

∇′ ×E′ = −j ω
c0
LH (4.10)

∇′ ×H = j
ω

c0
LE′ + LJ (4.11)

Notice now that in the above, H, E′, and LJ have the same unit, and ∇′
is dimensionless. Therefore, one can compare terms, and one can ignore the
frequency dependent term when

ω

c0
L� 1 (4.12)

Or when

2π
L

λ0
� 1 (4.13)

Therefore, the above criteria are for the validity of the static or quasi-static
approximation. When these criteria are satisfied, then Maxwell’s equations can
be simplified to and approximated with the following equations

∇′ ×E′ = 0 (4.14)

∇′ ×H = LJ (4.15)

which are the static equations of electromagnetic theory. In other words, one
can solve an optics problem where ω is humongous or the wavelength very short,
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with a plasmonic nanoparticle using quasi-static analysis if the particle is small
enough compared to wavelength of the light. Also in circuit theory where static
analysis prevails, we better check if (4.13) is satisfied before we use circuit theory
comfortably.

At 3 GHz, where the wavelength is 10 cm, when the circuit board or the
computer chip is much smaller than this dimension, circuit theory can be used.
But when the clock rate of the computer switches up to 10 GHz, many circuit
analysis do not hold any more. Then one really has to perform electrodynamic
analysis of the electromagnetic phenomena inside the circuit board, especially
in the computer chassis board. One needs to solve Maxwell’s equations in its
full glory.

In (4.13), this criterion has been expressed in terms of the dimension of the
object L compared to the wavelength λ0. Alternatively, we can express this
criterion in terms of transit time. The transit time for an electromagnetic wave
to traverse an object of size L is τ = L/c0 and ω = 2π/T where T is the period
of the time-harmonic oscillation. Hence, (4.12) can be re-expressed as

2πτ

T
� 1 (4.16)

The above implies that if the transit time τ needed to traverse the object of
length L is much small than the period of oscillation of the electromagnetic field,
then static theory can be used. The finite speed of light gives rise to delay or
retardation of electromagnetic signal when it propagates through space. When
this retardation effect can be ignored, then static theory can be used. In other
words, if the speed of light had been infinite, there is no retardation effect, and
static theory can always be used. Alternatively, the infinite speed of light will
give rise to infinite wavelength, and criterion (4.13) will always be satisfied, and
static theory prevails.

In closing, we would like to make one more remark. The right-hand side of
(4.8), which is Faraday’s law, is essential for capturing the physical mechanism
of an inductor and flux linkage. And yet, if we drop it, there will be no inductor
in this world. To understand this dilemma, let us rewrite (4.8) in integral form,
namely,

˛
C

E′ · dl = −jωµ0
L

η0

¨
S

dS ·H (4.17)

In the inductor, the right-hand side has been amplified by multi-turns, effectively
increasing S, the flux linkage area. Or one can think of an inductor as having
a much longer effective length Leff when untwined so as to compensate for
decreasing frequency ω. Hence, the importance flux linkage or the inductor in
circuit theory is not diminished even when the frequency is low.
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